Appondx 2.
( Undev sUbmissis n)

A MARKOV DECISION MODEL FOR OVERHAUL %j« & / ; 2?

OF REPAIRABLE REDUNDANT SYSTEMS
JOF

Margaret K. Schaefer

Department of Mathematics

College of William and Mary = §3
Williamsburg, Virginia e )
vy Tu AT
‘ — -1 CD
— I Lo
%) Tz
. =) e I
Charles H. Smith ' . =T

. =) .

School of Business A

. ()

Virginia Commonwealth University <o

Richmond, Virginia

) 7ﬂ/“{b;;mi ;U75Q3

In order to meet high reliability requirements, complex machines are
often designed with a k-out-of-n component configuration, in which the
system is operable so long as at least k of its n identical components
work. Such reliable machines are often composed of repairable components
and are maintained through scheduled, periodic overhauls, during which all
failed parts are replaced by good ones. We develop a Markov decision model
to determine the optimal inventories of repairable spare parts for such a
system and simultaneously determine the optimal repair policy when there is
a choice at each overhaul among a set of repair rates. The repair policy
may be state-dependent; a policy might use a fast repair rate when q or
fewer spares are on hand at the end of an overhaul, and use a slow repair rate
otherwise. The objective is to minimize total long-run expected costs of spares,

stockouts and repairs. A simple example is included to illustrate the model

and its solution through linear programming. ,
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1. INTRODUCTION

Complex machines whlch must perform very reliably are often de51gned
so that they can function even when some components have failed, employing
a k-out-of-n component configuration. Such machines are often scheduled
for periodic oﬁerhauls at a maintenance center, during which all failed
parts are replaced by good ones to renew the machine's reliability. In
general, periodic overhauls are advisable when emergency repair during
the time interval between overhauls is impossible or very costly, as will
often be the case for systems on submarines, aircraft, helicopters, and
space ﬁehicles.

A typical application of the model involves ultra-reliable avionics
control systems for commercial aircraft, presently being developed by NASA.
The avionics system will consist of reliable, repairable, expensive modules,
arranged in a k-out-of-n configuration. For example, the control system
might be operable if 3 out of 5 CPU's were operating. Demands for parts
at periodic overhauls will be met by inventories stocked at a maintenance
center.

The machines must leave the maintenance center in "good-as-new" condi-
tion in order to meet reliability requirements. Therefore, if a needed
part or parts are not available in current inventory, the overhaul cannot
be completed without incurring extra cost. Required parts which are out
of stock must be obtained by some emergency procedure, such as immediate
repair of the part. Stockout costs will vary, depending upon the number

of parts required.

A Markov decision model to determine the optimal repairable parts in-
ventory and repair strategy for such a maintenance center is developed in
this paper. Total long-run expected shortage costs, repair costs, and hold-
ing costs are minimized for a machine containing a single system of redundant
parts. Transition probabilities are calculated for each possible state and
repair rate, and the optimal spare parts inventory and repair strategy is
determined through linear programming. A simple example is included to

illustrate the model. -



2. RELATED MODELS IN THE LITERATURE

There is very little literature on the problem of optimal maintenance
center inventories. In a recent surQey by Nahmias [2] of the repairable
inventory literature, there were no maintenance center models cited. In
all of the models he reﬁiewed, a demand for a part was recognized as soon
as the part failed. In a maintenance center model, demands for parts occur
at periodic oﬁerhauls, where seﬁeral parts may be demanded simultaneously
and all demands must be met in order to complete the overhaul. Schaefer [4]
found optimal maintenance center inventories for complex machines under a
job~completion criterion, where a single stockout penalty was assessed if
the overhaul could not be completed because of shortage. The model handled
machines with seﬁeral types of parts, but exact results were obtained only
when part failures were low and there was only ome part of each type.
Lawrence and Schaefer [3] found optimal inventories for a set of independent
k-out~of-n systems under a constraint on total investment, but the repair
rate for each type of part was constant, so that the decision variables
were the initial number of spares of each type. The model presented here, a
rudimentary version of which appeared in Schaefer [5], assesses a different
stockout penalty for each number of parts missing and sums to determine the
expected stockout costs. Using a Markov decison process model, the optimal

spares inventory and repair shop strategy are determined.
3. THE MODEL AND ITS LINEAR PROGRAMMING FORMULATION

Consider a maintenance center serving a set of identical machines con-
taining -a single k-out-of-n system of independent identical components. We
assume that each machine has an identical workload and that one machine arrives
for overhaul each day. We seek the initial inﬁentory of spare parts and repair
strategy which minimizes expected stockout costs, repair costs and holding
costs. We assume that each machine arri&es for errhaul—in functioning con-~
dition so that at least k parts are working. That is, the machine is so re-
liable that the probability that more than n-k parts have failed is negligi-
ble, surely a reasonable assumption since_redundancy is employed to ensure high
reliability. Each failed part is immediately sent to a repair shop, from which
it eventually returns to replenish the stock of spares at the maintenance center.
The total number of spares on hand and undergoing repair is a constant, s, which

is a decision variable in the model. A stockout situation will occur if demand



for spares at an overhaul exceeds the number of spares presently on hand. We
assume that even if the part is stocked out, the machine is released from over-
haul without appreciable delay, although a shortage penalty is assessed. Thus
excess demands are not backordered.

We assume that after each overhaul the maintenance center can choose the
repair rate to be employed by the repair shop until the next overhaul, pre-
sumably by using overtime or additional repairmen. The number of initial spares
and the repair rate are traded off against each other; a small number of spares
repaired rapidly may be as effective as a large number of spares repaired at a
slow rate. In fact, if repairs were instantaneous, no spares at all would be
required.

We will assume that using a faster repair rate costs more than a slow one.
Otherwise, it would neﬁer be optimal to use a slow repair rate. Although faster
repair rates are more costly, if they are utilized, the expected repair time per
spare is decreased so the chances of stockout penalty at the next overhaul are
diminished. The optimal repair strategy might be to choose a slow repair rate
at all times when there are seﬁeral spares on hand and to use a faster rate when-
ever current spares inventory is low, so as to decrease the probabliity of stock-
out at the next overhaul. Of course, the optimal number of spares and repair
strategy will depend upon the relative costs of stockouts, repairs and inventory.

We model the inﬁentory process as a Markov chain, with time intervals of
one day and states representing the number of spares available at the maintenance
center at the end of the day. Stockouts are denoted by negative state values.
Thus the possible states are m-n,...,s, where s is the number of spares initially
stocked.

We introduce the following notation:

H = daily holding cost of a spare;

the rth exponential repair rate, I<nrgRj;

T

Kr = expected cost per day of repairing spares at rate M3

A = constant failure rate of each component in failures/hour;

T = cycle time between overhauls, in hours;

a = 1 - exp(-AT) = probability that a single part has failed during the cycle;
br =1- exp(—ur) = probability that a part which was at the repair shop at the

end of one day returns to the center by the end of the next day using repair

rate M3



Li = penalty cost for having i spares on hand, i<0 (emergency repair cost);

Zr(t,u) = conditional probability that t spares return to the maintenance
center from the repair shop on a day that begins with u in the repair
shop, using repair rate Hos O<t<u<s;

Pskr) = matrix of transition probabilities with elementsPij, representing the
probability that j spares are on hand at the end of a day, given that i
spares were on hand at the end of the previous day, the repair rate was

“r and there were s spares on hand initially.

The probability vo that m parts are demanded at an overhaul,

n-m

X o Dy M _ (U t ., yu-t
O<m<n-k, is v (m) a (1-a) . Also, Zr(t,u) (t)br 1 br) .

Then Pij(r) for a given value of s may be calculated as

min IZ{s-j,n-k}
Pi.(r) = I var(qu—i,s—i) for i = 0,1,...,5 and j = k-n,...,s.
J =max {0,i-j}

Since there are no backorders, Pij(r) = Poj(r) for i = k-n,...,~1 and all j.

The problem may now be formulated as a linear programming problem [1]
with decision variables Yir where Yip = P{state = i and repair rate = r}.
For a given value of s, we formulate the problem of minimizing long run
expected average cost of repairs and shortages per unit of time as (P):

s R -1 R
(P): min E[C(s)] = I I Ky. + I I L.y,
isk-n r=1 % di=k-n =1 T IF
subject to

[} R
Q) : I oy, =1,
i=k-n r=1 %
R s R
(2) Zlyjr - b T yirPij(r) =0 for j = k-n,...,s8-1,

i=k-n r=1
3 Yir > 0, i=k-n,...,s; r=1,2,...R.
This problem is of reasonable size, having only R(s+n-k+l) variables and
stn-k+1 constraints, besides the non-negativity constraints. There are s+n-ktl

possible states of the system so there are s+n-k+l nonzero Yir values in the

optimal solution. If Yir > 0, r is the repair rate to be used when there are
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i on hand. There is exactly one positive Yir for each i so the optimal repair
policy is deterministic [1].

Problem (P) can be solved by the simplex method. Alternatively, it can
be solved by a policy-improvement algorithm, which is a good choice for this
problem since many possible policies can be rejected as clearly non-optimal,
reducing the potential number of policies to be examined. In particular, no
strategy with fast repair for i=q and slow repair for i=q-1 would ever be opti-
mal, since fast repair costs more than slow repair and there is greater chance
of stockout at next overhaul in state i-q-1 than for state i=q. Further, if the
criterion is to minimize expected total discounted costs, the method of successive
approximations [1] may be used. This method has the advantage of never requir-
ing solution of a system of simultaneous equations. On the other hand, the opti-
mal policy will not necessarily be reached in a finite number of iteratioms.

A separate optimal repair strategy must be determined for each value of s.
The total expected repair and stockout cost E[C(s)]* is added to the holding
cost Hs to get total expected costs. The optimal value of s and its associated

strategy is the one that minimizes total expected costs.
4, TILLUSTRATIVE EXAMPLE

Consider a machine containing a 4-out-of-6 redundant system. We assume
that the machine always arrives for overhaul functioning, so that no more than

2 components have failed.l The other parameters are as follows:

a=0.05, R=2, b, =0.2, b2 = 0.6, L_1 = $500, L_2 = $800, Kl = §50, K, = §75.

1 2
The results are summarized in Table 1, for s < 4. For each positive value of s, the
optimal strategy is to use the fast repair rate only when there are no spares on
hand.

As noted earlier, holding costs have not yet been considered. The daily
holding costs, Hs, must be added to E[C(s)]* to get total costs, TC(s). The
range of H values for which each s value is optimal may be calculated easily by
finding the breakeven points where E[C(s)]* + Hs = E[C(s+l)]* + H(s+l). The re-

sulting intervals are shown in Table 2.

lThis assumption should be verified by calculating the probability that the

number failed exceeds n-k. In our example, this probability is only 0.002.



TABLE 1

Linear Programming Solutions

V.. ¥ _ *
s ik Optimal Strategy E[C(s)]
0 Vo2 .0305 Emergency repair only, $140.45
2321 no spares on hand. Proba-
Va1 : bilities of stockout are
Yo .7351 merely the v, measures.
1 Y_gp = -0064 Fast repair for i = -2,-1,0, $ 94.84
slow repair for i > 1.
Y_12 .0608
Y02 .3075
Y11 .6254
2 Y_99 .0017 Fast repair for i = -2,-1,0, $ 65.33
slow repair for i > 1.
y .0201 -
-12
302 2 s
11 :
Y91 .4015
3 Y_99 .0005 Fast repair for i = -2,-1,0, $ 55.48
slow repair for i > 1.
Y_12 .0070
Yo2 .0557
Y11 .2340
Y1 .4003
Y31 .3026
4 Y_99 .0002 Fast repair for i = -2,-1,0, $ 51.95
- slow repair for i > 1.
Y_1o .0024
Yo2 .0212
Y11 - .1047
Y91 .2597
Y31 .3679
2440
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TABLE 2

H and TC(s) Intervals

H Values For Which s Is Optimal

H > $45.61

$29.51 « H < $45.61
$9.85 ¢ H < $29.51
$3.53 &< H < $9.85
H g $3.53

Resulting TC(s)

TC(0) = $140.45

124.32 ¢ TC(1l) < $140.45
75.18 < TC(2) < $124.32
59.01 < TC(3) < § 75.18
TC(4) < $59.01



Thus, by considering holding costs last, a simple sensitivity analysis
for H is apparent. If holding costs are difficult to estimate exactly, it
may be easier to decide in which interﬁal the H ﬁalue lies instead. Like-
wise, if H increases or decreases, Table 2 indicates whether a change in s is
required.

The holding cost needn't be linear. A non-linear function H(s) presents

no problem since TC(s) is enumerated.

5. EXTENSIONS

In this section we describe the required changes in the model when
(a) component failure rates are increasing rather than constant and preven-
tive replacement is necessary, and (b) when there is congestion possible in
the repair shop because there is only a single repairman.
(a) When component failure rates increase oﬁer time, we assume that the
component must be replaced preventively after M cycles. Then the probability
of component failure between overhauls will increase with the number of over-
haul cycles completed. Letting the number of cycles completed be i, the proba-
bility of component failure on cycle i+l is denoted by a41° i=0,1,...,M-1.
Then the steady-state component age distribution may be determined by find-
ing steady-state probabilities for a simple discrete Markov chain with tran-

sition probabilities pij defined as follows:

1—a.+ for i=0,1,...,M-1;

Pilgd1 = i+l
Pio = 2441 for i=0,1,...,M-1;
pMj = pOj for j=0,1, and pij = 0 elsewhere.

Here state 0 means the part must be replaced because of failure, and state
i=1,...,M means the part has successfully gone through i cycles. Because

the matrix is sparse, closed-form expressions for the steady-state probabili-
ties are available. 1In particular, given a set of {ai} probabilities, the
steady-state probability that, at an overhaul, a component will need to be re-

placed because of failure is given by E°=(l-ala2...aM)/(l+al+ala2+...+alaz..ﬂaM_l)

while the probability of preventive replacement is given by

HM=a1...aM/(1+a1a2...aM_1) where ai=1-ai,1=l,2,...,M. Thus the probability

that a particular component will need to be replaced at an overhaul is given by

H=H0+H For a k-out-of-n system, the probability v that exactly m parts are

M
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demanded is now vm=(;) Hm(l—H)n_m. The rest of the analysis remains the same.
If M is not specified but a constraint on mission reliability exists, that
is, the probability that the system fails between overhauls cannot exceed some
small number, o, then M may.be determined. Letting HO(M) be the probability
that a part fails between overhauls when replacement occurs after M cycles,
the optimal M will be the largest value satis%ying
n

X ) HO(M) J(l-l'[o(l“l))n-J & o, which may be found by a simple search,
j=n~k+l

since failure probability increases with M.

(b) The second generalization involves the repair times. The earlier
assumption that service times were independent, identically distributed expon-
ential random variables implies that there are an unlimited number of repair-
men, that a fajled unit will begin undergoing repair immediately. In many con-
texts, this assumption is not realistic, since congestion will appear when there
are few servers and many units requiring repair, and congestion will affect the
repair times. As an alternative, consider an M/M/1 queuing system with a single
server, exponential repair times, and first come, first served discipline.

Then Z(t,u) no longer has a binomial distribution. Instead, repaired parts

will leave the system according to a Poisson distribution until no further

items remain. We have

Z(t,yu) = (e_uut)/t! if Ogt<u
u-1

and Z(u,u) = T (e_uuk)/k! =1 -kéO Z(k,u).
Since the states ofuthe Markov chain are the number of items on hand, it is
clear that the Markov assumption that the next state of the system depends
only on the present state remains valid.

The assumption of the model that there is a choice of repair rates may
be interpreted to be a choice in the number of repairmen assigned to the
repair team or to overtime options for an existing team. The model could be

extended to the multi-server case but this would complicate the calculation

of Z and the Pij's and we do not consider that case here.

CONCLUSION -
We have applied Markov decision process techniques to a new problem,
simultaneously finding the optimal initial number of repairable spares and

the optimal repair strategy for maintenance center overhauls of redundant
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systems. The model requires solution of a reasonable number of linear pro-
gramming problems by the simplex method or a policy-improvement algorithm.
The required assumptions are not very restrictive, extensions are possible,

and few parameters must be estimated.
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